

General Certificate of Education Advanced Level Examination June 2010

Mathematics

Unit Further Pure 2

Wednesday 9 June 20101.30 pm to 3.00 pm

For this paper you must have:

- the blue AQA booklet of formulae and statistical tables.

You may use a graphics calculator.

Time allowed

- 1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- Write the question part reference (eg (a), (b)(i) etc) in the left-hand margin.
- You must answer the questions in the spaces provided. Do not write outside the box around each page.
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work that you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 75 .

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.

1 (a) Show that

$$
9 \sinh x-\cosh x=4 \mathrm{e}^{x}-5 \mathrm{e}^{-x}
$$

(b) Given that

$$
9 \sinh x-\cosh x=8
$$

find the exact value of $\tanh x$.

2 (a) Express $\frac{1}{r(r+2)}$ in partial fractions.
(b) Use the method of differences to find

$$
\sum_{r=1}^{48} \frac{1}{r(r+2)}
$$

giving your answer as a rational number.

3 Two loci, L_{1} and L_{2}, in an Argand diagram are given by

$$
\begin{aligned}
& L_{1}:|z+1+3 \mathrm{i}|=|z-5-7 \mathrm{i}| \\
& L_{2}: \arg z=\frac{\pi}{4}
\end{aligned}
$$

(a) Verify that the point represented by the complex number $2+2 \mathrm{i}$ is a point of intersection of L_{1} and L_{2}.
(b) Sketch L_{1} and L_{2} on one Argand diagram.
(c) Shade on your Argand diagram the region satisfying
both

$$
|z+1+3 \mathrm{i}| \leqslant|z-5-7 \mathrm{i}|
$$

and

$$
\frac{\pi}{4} \leqslant \arg z \leqslant \frac{\pi}{2}
$$

4 The roots of the cubic equation

$$
z^{3}-2 z^{2}+p z+10=0
$$

are α, β and γ.
It is given that $\alpha^{3}+\beta^{3}+\gamma^{3}=-4$.
(a) Write down the value of $\alpha+\beta+\gamma$.
(b) (i) Explain why $\alpha^{3}-2 \alpha^{2}+p \alpha+10=0$.
(ii) Hence show that

$$
\alpha^{2}+\beta^{2}+\gamma^{2}=p+13
$$

(iii) Deduce that $p=-3$.
(c) (i) Find the real root α of the cubic equation $z^{3}-2 z^{2}-3 z+10=0$.
(ii) Find the values of β and γ.

5 (a) Using the identities

$$
\cosh ^{2} t-\sinh ^{2} t=1, \quad \tanh t=\frac{\sinh t}{\cosh t} \text { and } \operatorname{sech} t=\frac{1}{\cosh t}
$$

show that:
(i) $\tanh ^{2} t+\operatorname{sech}^{2} t=1$;
(ii) $\frac{\mathrm{d}}{\mathrm{d} t}(\tanh t)=\operatorname{sech}^{2} t$;
(iii) $\frac{\mathrm{d}}{\mathrm{d} t}(\operatorname{sech} t)=-\operatorname{sech} t \tanh t$.
(b) A curve C is given parametrically by

$$
x=\operatorname{sech} t, y=4-\tanh t
$$

(i) Show that the arc length, s, of C between the points where $t=0$ and $t=\frac{1}{2} \ln 3$ is given by

$$
s=\int_{0}^{\frac{1}{2} \ln 3} \operatorname{sech} t \mathrm{~d} t
$$

(ii) Using the substitution $u=\mathrm{e}^{t}$, find the exact value of s.

6 (a) Show that $\frac{1}{(k+2)!}-\frac{k+1}{(k+3)!}=\frac{2}{(k+3)!}$.
(2 marks)
(b) Prove by induction that, for all positive integers n,

$$
\begin{equation*}
\sum_{r=1}^{n} \frac{r \times 2^{r}}{(r+2)!}=1-\frac{2^{n+1}}{(n+2)!} \tag{6marks}
\end{equation*}
$$

7 (a) (i) Express each of the numbers $1+\sqrt{3} \mathrm{i}$ and $1-\mathrm{i}$ in the form $r \mathrm{e}^{\mathrm{i} \theta}$, where $r>0$.
(ii) Hence express

$$
(1+\sqrt{3} i)^{8}(1-i)^{5}
$$

in the form $r \mathrm{e}^{\mathrm{i} \theta}$, where $r>0$.
(b) Solve the equation

$$
z^{3}=(1+\sqrt{3} i)^{8}(1-i)^{5}
$$

giving your answers in the form $a \sqrt{2} \mathrm{e}^{\mathrm{i} \theta}$, where a is a positive integer and $-\pi<\theta \leqslant \pi$.

END OF QUESTIONS

